首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   8篇
  免费   0篇
现状及发展   2篇
研究方法   1篇
综合类   5篇
  2018年   1篇
  2012年   1篇
  2011年   1篇
  2008年   1篇
  2006年   1篇
  2005年   1篇
  2003年   1篇
  2002年   1篇
排序方式: 共有8条查询结果,搜索用时 0 毫秒
1
1.
Dominant role of the niche in melanocyte stem-cell fate determination   总被引:47,自引:0,他引:47  
Stem cells which have the capacity to self-renew and generate differentiated progeny are thought to be maintained in a specific environment known as a niche. The localization of the niche, however, remains largely obscure for most stem-cell systems. Melanocytes (pigment cells) in hair follicles proliferate and differentiate closely coupled to the hair regeneration cycle. Here we report that stem cells of the melanocyte lineage can be identified, using Dct-lacZ transgenic mice, in the lower permanent portion of mouse hair follicles throughout the hair cycle. It is only the population in this region that fulfils the criteria for stem cells, being immature, slow cycling, self-maintaining and fully competent in regenerating progeny on activation at early anagen (the growing phase of hair follicles). Induction of the re-pigmentation process in K14-steel factor transgenic mice demonstrates that a portion of amplifying stem-cell progeny can migrate out from the niche and retain sufficient self-renewing capability to function as stem cells after repopulation into vacant niches. Our data indicate that the niche has a dominant role in the fate determination of melanocyte stem-cell progeny.  相似文献   
2.
A subclass of aquaporin (AQP) water channels, termed aquaglyceroporins, are also able to transport glycerol and perhaps urea and other small solutes. Although extensive data exist on the physiological roles of aquaporin-facilitated water transport, until recently the biological significance of glycerol transport by the mammalian aquaglyceroporins has been unknown. There is now compelling evidence for involvement of aquaglyceroporin- facilitated glycerol transport in skin hydration and fat cell metabolism. Mice deficient in AQP3 have dry skin, reduced skin elasticity and impaired epidermal biosynthesis. Mice lacking AQP7 manifest progressive adipocyte fat accumulation and hypertrophy. These skin and fat phenotypes are attributable to impaired glycerol transport. A potential implication of these findings is the possibility of modulation of aquaglyceroporin expression or function in the therapy of skin diseases and obesity. Received 20 January 2006; received after revision 21 February 2006; accepted 20 March 2006  相似文献   
3.
Allen NJ  Bennett ML  Foo LC  Wang GX  Chakraborty C  Smith SJ  Barres BA 《Nature》2012,486(7403):410-414
In the developing central nervous system (CNS), the control of synapse number and function is critical to the formation of neural circuits. We previously demonstrated that astrocyte-secreted factors powerfully induce the formation of functional excitatory synapses between CNS neurons. Astrocyte-secreted thrombospondins induce the formation of structural synapses, but these synapses are postsynaptically silent. Here we use biochemical fractionation of astrocyte-conditioned medium to identify glypican 4 (Gpc4) and glypican 6 (Gpc6) as astrocyte-secreted signals sufficient to induce functional synapses between purified retinal ganglion cell neurons, and show that depletion of these molecules from astrocyte-conditioned medium significantly reduces its ability to induce postsynaptic activity. Application of Gpc4 to purified neurons is sufficient to increase the frequency and amplitude of glutamatergic synaptic events. This is achieved by increasing the surface level and clustering, but not overall cellular protein level, of the GluA1 subunit of the AMPA (α-amino-3-hydroxy-5-methyl-4-isoxazole propionic acid) glutamate receptor (AMPAR). Gpc4 and Gpc6 are expressed by astrocytes in vivo in the developing CNS, with Gpc4 expression enriched in the hippocampus and Gpc6 enriched in the cerebellum. Finally, we demonstrate that Gpc4-deficient mice have defective synapse formation, with decreased amplitude of excitatory synaptic currents in the developing hippocampus and reduced recruitment of AMPARs to synapses. These data identify glypicans as a family of novel astrocyte-derived molecules that are necessary and sufficient to promote glutamate receptor clustering and receptivity and to induce the formation of postsynaptically functioning CNS synapses.  相似文献   
4.
Rab44 is an atypical Rab GTPase that contains some additional domains such as the EF-hand and coiled-coil domains as well as Rab-GTPase domain. Although Rab44 genes have been found in mammalian genomes, no studies concerning Rab44 have been reported yet. Here, we identified Rab44 as an upregulated protein during osteoclast differentiation. Knockdown of Rab44 by small interfering RNA promotes RANKL-induced osteoclast differentiation of the murine monocytic cell line, RAW-D or of bone marrow-derived macrophages (BMMs). In contrast, overexpression of Rab44 prevents osteoclast differentiation. Rab44 was localized in the Golgi complex and lysosomes, and Rab44 overexpression caused an enlargement of early endosomes. A series of deletion mutant studies of Rab44 showed that the coiled-coil domain and lipidation sites of Rab44 is important for regulation of osteoclast differentiation. Mechanistically, Rab44 affects nuclear factor of activated T-cells c1 (NFATc1) signaling in RANKL-stimulated macrophages. Moreover, Rab44 depletion caused an elevation in intracellular Ca2+ transients upon RANKL stimulation, and particularly regulated lysosomal Ca2+ influx. Taken together, these results suggest that Rab44 negatively regulates osteoclast differentiation by modulating intracellular Ca2+ levels followed by NFATc1 activation.  相似文献   
5.
6.
Aquaporin-1 (AQP1) is a water channel protein expressed widely in vascular endothelia, where it increases cell membrane water permeability. The role of AQP1 in endothelial cell function is unknown. Here we show remarkably impaired tumour growth in AQP1-null mice after subcutaneous or intracranial tumour cell implantation, with reduced tumour vascularity and extensive necrosis. A new mechanism for the impaired angiogenesis was established from cell culture studies. Although adhesion and proliferation were similar in primary cultures of aortic endothelia from wild-type and from AQP1-null mice, cell migration was greatly impaired in AQP1-deficient cells, with abnormal vessel formation in vitro. Stable transfection of non-endothelial cells with AQP1 or with a structurally different water-selective transporter (AQP4) accelerated cell migration and wound healing in vitro. Motile AQP1-expressing cells had prominent membrane ruffles at the leading edge with polarization of AQP1 protein to lamellipodia, where rapid water fluxes occur. Our findings support a fundamental role of water channels in cell migration, which is central to diverse biological phenomena including angiogenesis, wound healing, tumour spread and organ regeneration.  相似文献   
7.
Arita K  Ariyoshi M  Tochio H  Nakamura Y  Shirakawa M 《Nature》2008,455(7214):818-821
DNA methylation of CpG dinucleotides is an important epigenetic modification of mammalian genomes and is essential for the regulation of chromatin structure, of gene expression and of genome stability. Differences in DNA methylation patterns underlie a wide range of biological processes, such as genomic imprinting, inactivation of the X chromosome, embryogenesis, and carcinogenesis. Inheritance of the epigenetic methylation pattern is mediated by the enzyme DNA methyltransferase 1 (Dnmt1), which methylates newly synthesized CpG sequences during DNA replication, depending on the methylation status of the template strands. The protein UHRF1 (also known as Np95 and ICBP90) recognizes hemi-methylation sites via a SET and RING-associated (SRA) domain and directs Dnmt1 to these sites. Here we report the crystal structures of the SRA domain in free and hemi-methylated DNA-bound states. The SRA domain folds into a globular structure with a basic concave surface formed by highly conserved residues. Binding of DNA to the concave surface causes a loop and an amino-terminal tail of the SRA domain to fold into DNA interfaces at the major and minor grooves of the methylation site. In contrast to fully methylated CpG sites recognized by the methyl-CpG-binding domain, the methylcytosine base at the hemi-methylated site is flipped out of the DNA helix in the SRA-DNA complex and fits tightly into a protein pocket on the concave surface. The complex structure suggests that the successive flip out of the pre-existing methylated cytosine and the target cytosine to be methylated is associated with the coordinated transfer of the hemi-methylated CpG site from UHRF1 to Dnmt1.  相似文献   
8.
Mutant dynactin in motor neuron disease   总被引:24,自引:0,他引:24  
Impaired axonal transport in motor neurons has been proposed as a mechanism for neuronal degeneration in motor neuron disease. Here we show linkage of a lower motor neuron disease to a region of 4 Mb at chromosome 2p13. Mutation analysis of a gene in this interval that encodes the largest subunit of the axonal transport protein dynactin showed a single base-pair change resulting in an amino-acid substitution that is predicted to distort the folding of dynactin's microtubule-binding domain. Binding assays show decreased binding of the mutant protein to microtubules. Our results show that dysfunction of dynactin-mediated transport can lead to human motor neuron disease.  相似文献   
1
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号